

Craig Borland Customer Resource Specialist

Throwing water into the air in an outdoor environment and predicting where it will fall is far from an exact science. Many factors can influence this, some within our control but many are not.

As one famous irrigation philosopher once said
"If a landscape was like a pool table watering it would be easy"

Grass Reduces Greenhouse Gas

Grass Is Nature's Air Conditioner

 Grass Purifies Water- Phyto-remediation research

Grass Purifies the Air

- Absorbs particulates, sulfur dioxide, ozone \& other atmospheric pollutants

Grass Provides ...

- Urban habitat that is a highly productive forage area for birds/small mammals.
- Attractive recreational area. If lawns are removed, will children and pets be forced to play on native shrubs and bark?

Smart Irrigation

- Exactly the right amount of water
- Applied at the correct time
- Only to the targeted area
- With resource efficient results

The Regulatory Reality

Lawn care accounts for more than half of outdoor urban water use

Outdoor landscape irrigation 50\% Efficient
Lower priority than water use for fire protection, health \& safety uses

Smart Irrigation the Products

Identify the Opportunity for Justifiable Investment

- Spray Heads
- HUGE Installed Base
- Easy to Update-No Learning Curve
- Tangible Savings
- Controllers
- Huge Water Waster
- No Basis for Schedules

Simple Irrigation Rules

Apply only the water you need

- Scheduling and management

Apply it well

- Design, installation, and maintenance

Designing for Water Conservation

- Water Conservation is the key strategy for long term sustainability of the irrigation industries
- Irrigation designers have an environmental responsibility to protect water resources to the best of their ability through the design process
- Has implications on groundwater runoff, water quality, and resource management
- Requires advanced training and subject knowledge

Coverage Design Principals

- "Did you get it wet?"
- Head to head coverage was perfect
- If coverage was OK, wet and dry spots were "management problems"
- Variance between plant species, hydrozones and microclimates were ignored or downplayed

Irrigation System Problems Are Our Opportunities

1. Sprinkler Spacing
2. Mixed Nozzles and Equipment
3. Plant Interference
4. Incorrect Water Pressure
5. Tilted Sprinkler Heads
6. Head Arc Adjustment
7. Radius Adjustment
8. Low Head Drainage

Higher water costs are finally making it more expensive to waste water than to hire an irrigation professional to upgrade and manage the irrigation system. And rebates help subsidize the cost of the "SMART" hardware.

Smart Irrigation

What is it
What it is not

- Poor head location
- Mixed Irrigation Products
- Mixed Precipitation Rates
- Misdirected heads

Does not save endless amounts of water
Never designed for "Set-it-and-forget-it"

Irrigation Hydraulics is:

The study of water behavior at rest and in motion.
(or in other words--the study of pressure and flow)

Irrigation Hydraulics Affect

- Sprinkler and drip emitter performance
- Uniform application by sprinklers and drip emitters
- Irrigation system cost

Irrigation Hydraulics Affect

- Sprinkler performance
- Uniform coverage
- System cost

Application Rates

- An actual catch-can test is best method to determine the "Application Rate"
- Catalog values are a good starting point
- Conventional spray systems have an application rate of approximately 1.6 inches per hour.
- Most rotary sprinkler systems have an application rate of 0.5 0.7 inches per hour.

Uniformity

Refers to how evenly the water is applied to the landscape by the emission devices (sprinklers) comprising an irrigation zone

Efficiency

Refers to how much of the water applied to the landscape is beneficially used by the landscape

Catch Can Test Parameters

- Record static PSI
- Record operating PSI
- Record wind speed
- Measure sprinkler spacing
- Measure rotor rotation speed (5 rotations)
- Achieve avg catchment $=25 \mathrm{ml}$
- 24 Catchments (add in increments of 4)
θ

12 "Catchments"

SORTED DATA

Catchment \#	Measured mI
4	5
10	5
2	7
3	7
6	9
5	12
8	12
9	15
11	15
1	17
7	17
12	20
	141
$A V G=$	11.8

Calculate 'Lower Quarter" DU

1. Identify lowest 25% of catchments (in red)
2. Calculate average of lowest 25\% $(5+5+7) / 3=5.7$ = Lower Quarter Avg
3. Calculate "Lower Quarter" Distribution Uniformity

Lower Qtr Avg/Overall Avg $5.7 / 11.8=48.3 \%=$ DU $_{L Q}$

DULQ(Lower Quarter)

$5.7 \mathrm{l} 11.8=48.3 \%$	
SORTED DATA	
Catchment $\#$	Measured $\mathbf{~ m I}$
4	5
10	5
2	7
3	7
6	9
5	12
8	12
9	15
11	15
1	17
7	17
12	20
	141
AVG $=$	11.8

Conversion Table: DULQ to Scheduling Multiplier

DULQ	SM	DULQ	SM	DULQ	SM
1.00	1.00	0.78	1.15	0.56	1.36
0.98	1.01	0.76	1.17	0.54	1.38
0.96	1.02	0.74	1.18	0.52	1.40
0.94	1.04	0.72	1.20	0.50	1.43
0.92	1.05	0.70	1.22	0.48	1.45
0.90	1.06	0.68	1.24	0.46	1.48
0.88	1.08	0.66	1.26	0.44	1.51
0.86	1.09	0.64	1.28	0.42	1.53
0.84	1.11	0.62	1.30	0.40	1.56
0.82	1.12	0.60	1.32	Fix sprinkler zone 1st	
0.80	1.14	0.58	$\mathbf{1} 34$	when DULQ <0.40	

Lower Quarter Distribution Uniformity

Low quarter

Average of low quarter 63 ml

Average of total
75 ml

$$
D U_{\mathrm{LQ}}=\frac{63}{75}=.84
$$

Expected DU

	Achievable $(\mathrm{DU}$ LQ $)$	Target $\left(\mathrm{DU} \mathrm{LQ}^{2}\right.$	Historical $\left(\mathrm{DU} \mathrm{LQ}^{2}\right)$
Rotary Sprinklers	$0.75-0.85$	$0.65-0.75$	$0.55-0.65$
Spray Sprinklers	$0.65-0.75$	$0.55-0.65$	$0.45-0.55$

If lower than historical, consider system improvements

Impact of Uniformity

Stared with:

DU is 100 and SC is 1.0
run time is 60 minutes Water applied is 1,559 gallons

DU is 0.67 and SC is 1.5
Run time is 90 minutes Water applied is 2,339 gallons

DU is 0.40 and SC is 2.5
Run time is 150 minutes Water applied is 3,898 gallons

Precipitation Rate

The rate at which the sprinklers apply water Measured in inches per hour (in./hr)
Varies from zone to zone and within a zone Most systems' precipitation rates exceed the infiltration rate
There are two ways to calculate PR

- Gross or Theoretical Precipitation Rate
- Net Precipitation Rate

Theoretical Precipitation Rate

Formula:

$$
P R=\frac{96.3 \times Q}{A}
$$

where:
$\mathrm{PR}=$ gross precipitation rate $\{\mathrm{in} . / \mathrm{hr}\}$
$Q=$ flow rate $\{g p m\}$ Full Cir Noz
$\mathrm{A}=$ area $\left\{\mathrm{ft}^{2}\right\}$
$96.3=$ Constant

Where Does 96.3 Come From?

96.3 is the factor that converts GPM (gallons per minute) into "/HR (inches/hour)

- 0.623 gallons occupy the space made by a $1^{\prime} \times 1^{\prime} \times 1^{\prime \prime}$ shape.
- 7.48 gallons occupy the space made by a 1' x 1' x 1^{\prime} shape (1 cubic foot).
- 748 gallons fit into 100 cubic feet.
$60 \mathrm{~min} /$ hour $X 12$ "/foot $X 100 \mathrm{ft}^{3} / 748 \mathrm{~g}=96.3 \underline{\mathrm{~min} \text { in } \mathrm{ft}^{2}}$ Hour gal

$Q \mathrm{Qtr}=1$ 15×15

$Q=3$
40×40

Area

$$
\frac{96.3 \times 4}{15 \times 15}=1.71^{\prime \prime}
$$

$96.3 \times$ Q
96.3×12
$=.72 "$

ET, PAW, and MAD

Therefore in 4 days, apply 0.50 inches of water

First need to begin with system capacity

Working Pressure

POC capacity

Velocity

Common Scenarios

Combining zones

PSI changes by changing heads

Converting heads

Adding heads

Determining Pressure \& Flow

The "Rule of Three"

Using Water Meter, and Service Lines

Determining Pressure \& Flow

The "Rule of Three"

Rule 1:

The maximum allowable loss through the meter should be less than ten percent (10\%) of the inlet pressure at the meter. (80psi)

Pressure Loss-psi

The "Rule of Three"

Rule 2:
The maximum flow (GPM) through the meter should be limited to 75% of the maximum safe flow through the meter

FLON GPW	NOMINAL SIIE			
	$4^{1 / 2}$	$x^{\text {T}}$	$1^{1 /}$	114 ${ }^{\text {E }}$
1	0.2	0.1		
2	0.3	0.2		
3	0.4	0.3		
4	0.6	0.5	0.1	
5	0.9	0.6	0.2	
6	1.3	0.7	0.3	
7	1.8	0.8	0.4	
8	2.3	1.0	0.5	
9	3.0	1.3	0.6	
10	3.7	1.6	0.7	
11	4.4	1.9	0.8	
12	5.1	22	0.9	
13	6.1	2.6	1.0	
14	7.2	3.1	1.1	
15	8.3	3.6	1.2	
16	9.4	4.1	1.4	0.4
17	10.7	4.6	1.6	0.5
18	120	5.2	1.8	0.6
19	13.4	5.8	20	0.7
20	150	6.5	22	0.8
22		7.9	28	1.0
24		9.5	3.4	1.2
26		11.2	4.0	1.4
28		13.0	4.6	1.6
30		15.0	5.3	1.8
32			60	2.1

The "Rule of Three"

Rule 3: The velocity of water flow (feet per second) through the service line supplying the meter should be approximately seven feet per second TYPE 'K' COPPER TUBING

Size: $1 / 2^{\prime \prime}$ thru $3^{\prime \prime} \quad$ Flow: 1 thru 600 GPM ASTM B 88 C=140 PSI LOSS PER 100 FEET OF PIPE (PSI/100 FT)

size	$1 / 2^{\prime \prime}$		$5 / 8^{\prime \prime}$		$3 / 4^{\prime \prime}$		$1^{\prime \prime}$		$11 / 4^{\prime \prime}$		$11 / 2^{\prime \prime}$		$2^{\prime \prime}$		$21 / 2^{\prime \prime}$	
Avg ID Pipe OD Avg Wall	$\begin{aligned} & 0.527 \\ & 0.625 \\ & 0.049 \end{aligned}$		$\begin{aligned} & 0.652 \\ & 0.750 \\ & 0.049 \end{aligned}$		$\begin{aligned} & 0.745 \\ & 0.875 \\ & 0.065 \end{aligned}$		0.995 1.125 0.065		$\begin{aligned} & 1.245 \\ & 1.375 \\ & 0.065 \end{aligned}$		$\begin{aligned} & 1.481 \\ & 1.625 \\ & 0.072 \end{aligned}$		$\begin{aligned} & 1.959 \\ & 2.125 \\ & 0.083 \end{aligned}$		$\begin{aligned} & 2.435 \\ & 2.625 \\ & 0.095 \end{aligned}$	
Flow GPM	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$	Velocity FPS	$\begin{aligned} & \text { PSI } \\ & \text { Loss } \end{aligned}$
1	1.47	1.09	0.96	0.39	0.74	0.20	0.41	0.05	0.26	0.02						
2	2.94	3.94	1.92	1.40	1.47	0.73	0.82	0.18	0.53	0.06						
3	4.41	8.35	2.88	2.97	2.21	1.55	1.24	0.38	0.79	0.13						
4	5.88	14.23	3.84	5.05	2.94	2.64	1.65	0.65	1.05	0.22						
5	7.35	21.51	4.80	7.64	3.68	3.99	2.06	0.98	1.32	0.33						
6	8.81	30.15	5.76	10.70	4.41	5.59	2.47	1.37	1.58	0.46	1.12	0.20				
7	10.28	40.12	6.72	14.24	5.15	7.44	2.88	1.82	1.84	0.61	1.30	0.26				
8	11.75	51.37	7.68	18.24	5.88	9.53	3.30	2.33	2.11	0.78	1.49	0.34				
9	13.22	63.90	8.64	22.68	6.62	11.85	3.71	2.90	2.37	0.97	1.67	0.42				
10	14.69	77.66	9.60	27.57	7.35	14.41	4.12	3.52	2.63	1.18	1.86	0.51				
12			11.52	38.64	8.82	20.20	4.95	4.94	3.16	1.66	2.23	0.71	1.28	0.18		
14			13.44	51.41	10.29	26.87	5.77	6.57	3.69	2.21	2.60	0.95	1.49	0.24		
16			15.36	65.83	11.76	34.41	6.59	8.42	4.21	2.83	2.98	1.22	1.70	0.31		
18			17.28	81.88	13.23	42.80	7.42	10.47	4.74	352	3. 15	1.51	1.91	0.39		

The Rule of "3" - Determining Flow Size of Zones

Make sure the gpm of the zone meets the worst case of the following three conditions

1. Friction loss through the meter does not exceed 10% of the static pressure at the site
2. Do not exceed 75% of the meter capacity
3. 7-9 feet per second velocity in service line

$15^{\prime \prime}$ Series with 27° Trajectory

Nowale	Prexsye	Raplis	GFM		
IPN-15F	20	13	2.85	1.63	1.89
	30	15	3.60	1.55	1.79
	40	16	4.20	1.59	1.84
	50	16	4.58	1.73	2.00
Patsm	20	13	2.10	1.61	1.85
	30	15	2.60	1.49	1.72
	40	16	3.00	1.61	1.86
	50	16	3.40	1.72	1.98
W-171	20	14	1.78	1.38	1.59
	30	15	2.20	1.42	1.64
	40	16	2.66	1.51	1.74
	50	16	2.84	1.61	1.86
\|FN-T5H	20	13	1.37	1.55	1.79
	30	15	1.65	1.44	1.66
\checkmark	40	16	2.02	1.53	1.77
	50	16	2.14	1.62	1.87
\|PW-15]	20	14	0.95	1.52	1.75
	30	15	1.10	1.42	1.64
	40	16	1.30	1.57	1.82
	50	16	1.45	1.75	2.03
PW-150	20	14	0.68	1.34	1.55
	30	15	0.85	1.46	1.69
-	40	16	1.04	1.57	1.82
	50	16	1.23	1.86	2.15

Rules of three:

1) 14 gpm
2) 15 gpm
3) 18 gpm

All 15' sprays at 50psi

Controller showed a 15min runtime.

New flow 9.27gpm

Arc	PSI	GPM	Radius	PTecip.Rate 圆 (in./hr.)
15Q	40	0.53	14.2	1.0
	50	0.58	15.0	1.0
	60	0.58	15.0	1.0
	70	0.58	15.0	1.0
$15 T$	40	0.72	14.3	1.0
	50	0.77	15.0	1.0
	60	0.77	15.0	1.0
	70	0.77	15.0	1.0
$15 \mathrm{H}$	40	1.10	14.5	1.0
	50	1.16	15.0	1.0
	60	1.16	15.0	1.0
	70	1.16	15.0	1.0
$15 T T$	40	1.45	14.5	1.0
	50	1.54	15.0	1.0
	60	1.54	15.0	1.0
	70	1.54	15.0	1.0
$15 \mathrm{TQ}$	40	1.72	14.5	1.0
	50	1.78	15.0	1.0
	60	1.78	15.0	1.0
	70	1.78	15.0	1.0
	40	2.20	14.5	1.0
	50	2.31	15.0	1.0
	60	2.31	15.0	1.0
	70	2.31	15.0	1.0

Rain Bird MPR nozzle 15H
Toro Precision Spray with PCD 15H
2.3 .4 GPM or $2^{\prime \prime} / \mathrm{hr}$. precipitation rate
1.16 GPM or $1^{1 /} / \mathrm{hr}$. precipitation rate

51\% Lower Precipitation Rate = Reduced Water Waste!

57\% Lower Precipitation Rate = Reduced Water Waste!

12H Performance at 50 PSI

51\% Lower Precipitation Rate = Reduced Water Waste!

10H Performance at 50 PSI

AB1881 Design Requirement

Head to head coverage is recommended. However, sprinkler spacing shall be set and designed to achieve the highest possible distribution uniformity using the manufacturer's specifications \& recommendations.

Sprinkler Name	TORO PRECISION SPRAY	Base Pressure (PSI)	30.0
Sprinkler Model	O-T	Riser Height (IN)	4.0
Nozzle Size	$10 \mathrm{H} \# 1$	Set Screw Setting	
Flow Rate (GPM)	0.60	Degree of Arc	180
Date/Time of Test	$07 / 10 / 09$	Mins./Revolution	0.00
Testing Facility	C.I. T.	Record Number	
Comment	Sprinkler provided by: TORO		
Catchment Spacing	0.5^{\prime}		

Distr. Uniformity	81%	$\operatorname{Min}(\ln / \mathrm{Hr})$	0.426	Spacing
CU (Christiansen)	90%	$\operatorname{Mean}(\ln / \mathrm{Hr})$	$0.888 \quad \mathrm{~N} / \mathrm{A} \quad$ (Theor.)	Rectangular
Sched Coeff (5\%)	1.4	$\operatorname{Max}(\ln / \mathrm{Hr})$	1.157	$10.0^{\prime} \times 10.0^{\prime}$

Rules of three:

1) 14 gpm
2) 15 gpm
3) 18 gpm

All 15' sprays at 50psi
 Controller showed a 15min runtime.

15 Series HEVAN

25° Trajectory				Precip In/h
Nozzle	Pressure psi	Radius ft.	Flow gpm	
$360^{\circ} \mathrm{Arc}$	15	11	2.62	2.08
	20	12	3.02	2.02
	25	14	3.38	1.66
	30	15	3.70	1.58
$270^{\circ} \mathrm{Arc}$	15	11	1.96	2.08
	20	12	2.27	2.02
	25	14	2.53	1.66
	30	15	2.78	1.58
$180^{\circ} \mathrm{Arc}$	15	11	1.31	2.08
	20	12	1.51	2.02
	25	14	1.69	1.66
	30	15	1.85	1.58
$90^{\circ} \mathrm{Arc}$	15	11	0.65	2.08
	20	12	0.76	2.02
	25	14	0.84	1.66
	30	15	0.93	1.58

Courtesy of Rainbird Irrigation

Rules of three:

1) 14 gpm
2) 15 gpm
3) 18 gpm

All 15' sprays at 50psi
Controller showed a 15 min runtime.

90°	20	0.43	16.0	0.65
	30	0.49	17.5	0.62
	40	0.62	20.5	0.57
	50	0.75	22.5	0.57
	60	0.82	23.5	0.57
	75	0.92	25.0	0.57
180°	20	0.83	15.0	0.71
	30	0.94	17.0	0.63
	40	1.22	20.5	0.56
	50	1.46	22.5	0.56
	60	1.61	24.0	0.54
	75	1.81	26.0	0.52
360°	20	1.81	15.0	0.77
	30	2.00	17.2	0.65
	40	2.56	20.9	0.56
	50	3.09	22.9	0.57
	60	3.34	23.8	0.57
	75	3.68	25.6	0.54

Courtesy of Toro Irrigation

New flow 11.93gpm

Rules of three:

1) 14 gpm
2) 15 gpm
3) 18 gpm

Courtesy of Hunter Industries

Application Efficiency

The ratio of total water applied to the total water infiltrated and stored in the soil
Often mistakenly used interchangeably with uniformity
Efficiency is affected by

- Uniformity
- Scheduling
- Maintenance

Facts About Water

1 Cubic Foot of Water

- 7.48 Gallons

1 Sq Ft filled 1" high with water

- Equivalent to 0.623 gallons

Pool Evaporation - 100\% ET

Pool evaporation: 1000 sq ft surface area

Water Use Equation:
ET (inches/yr) x 0.623 x sq. ft

Gallons lost in 1 year from pool through evaporation 55 in $\times .623 \mathrm{gal} / \mathrm{in}^{\mathrm{ftt}}{ }^{2} \times 547 \mathrm{ft}^{2}=18,743 \mathrm{~g}=25$ units x $\$ 10=\$ 250 /$ year or $\$ 20.83 /$ month

"Plant Factors"

- The Reference Crop or Plant has a Value of 1.0
- How do other "Plants" compare to the reference crop?
- Cool Season Turf = . 8
- Warm Season Turf = . 6
- Ground Cover = . 6
- Shrubs (w/o GC) $=.5$
- Drought Tolerant \& Natives = . 3

Turf Water Use vs. Pool Evaporation

Use the same 1000 square foot area as the pool, but adjust equation for turfgrass.

This requires adding two decimal numbers to
 the equation. A "PF" Plant Factor in the numerator \& an "IE" Irrigation Efficiency number in the denominator as follows.

Annual Turf Water Use (in gallons) Equation:
[ET (inches/yr) x (PF) X $0.623 x$ sq. ft] / IE

ET - Plant - Soil Relationships

WEATHER - ET (Evaporation + Plant Transpiration)

\downarrow Tempo \downarrow| Solar |
| :---: |
| Radiation |$\downarrow_{\text {Humidity }} \downarrow$ Wind \downarrow

PLANT (Water User) (Water Delivery) SPRINKLER SYSTEM

- Plant Type - Plant Factor
- Planting Density
- Microclimate

- Clay/Silt/Sand Combination
- Intake Rate (inches/hour)
- Plant Available Water
- Management Allowed Depletion

Weather, ET \& The Irrigation Schedule

WEATHER = ET (inches)

Solar
Tempo \Radiation \Humidity】 Wind

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TTL
2.1	2.7	3.7	4.7	5.1	6.0	7.1	6.7	5.6	4.2	2.6	2.0	52.5

Historical Monthly ET For Pasadena, CA

29.6%	38.0%	52.1%	66.2%	71.8%	84.5%	100%	94.4%	78.9%	59.2%	36.6%

Monthly Water Budget \%

Application Efficiency Equation

SQ' x PWR(ET) x . 623 (conversion from " to gal.)
$$
=\%
$$

Amount actually used

Application Efficiency Equation

$$
E_{a}=\frac{\text { Irrigation water beneficially used }}{\text { Irrigation water applied }} \times 100
$$

Plant Material \& Irrigation Technologies Drive Annual Water Use

Turf Water Use Equation (gallons per year)

[ET (inches/yr) x (PF) X $0.623 \times$ sq. ft] / |E
Keys to lower water use

- Selecting turf grasses with PFs at or below 0.6
- Making sure irrigation system is efficient and scheduling correct
- Dedicating more of landscape to drought tolerant plant material
- Permits use of lower PF

Water budget

- Determine proper water requirement needed
- Compare to what was applied
- Difference is the justification

Interdependent Elements

"Water use efficiency is obtained by appropriate design and installation, but landscape water management and appropriate horticultural practices are what produce and
 ensure desired results."

All 15' sprays at 50psi

Controller showed a 15min runtime.

Remember 18.02
$15^{\prime \prime}$ Series with 27° Trajectory

Nowale	Frexsure	Ratic	GF9	m	
IPN-15F	20	13	2.85	1.63	1.89
	30	15	3.60	1.55	1.79
	40	16	420	1.59	1.84
	50	16	4.58	1.73	2.00
[PN-1514	20	13	2.10	1.61	1.85
	30	15	2.60	1.49	1.72
	40	16	3.00	1.61	1.86
	50	16	3.40	1.72	1.98
FW-15TI	20	14	1.78	1.38	1.59
	30	15	2.20	1.42	1.64
	40	16	2.66	1.51	1.74
	50	16	2.84	1.61	1.86
IFN-15H	20	13	137	1.55	1.79
	30	15	1.65	1.44	1.66
\square	40	16	2.02	1.53	1.77
	50	16	2.14	1.62	1.87
\|P/N-	20	14	0.95	1.52	1.75
	30	15	1.10	1.42	1.64
+	40	16	130	1.57	1.82
	50	16	1.45	1.75	2.03
IPN-159	20	14	0.68	1.34	1.55
	30	15	0.85	1.46	1.69
-	40	16	1.04	1.57	1.82
	50	16	1.23	1.86	2.15

Old flow x run time

Compare new flow x run time

$$
\begin{array}{ll}
4 \times 1.23=4.92 & 4 \times .85=3.4 \\
4 \times 2.14=8.56 & 4 \times 1.65=6.6 \\
1 \times 4.58=4.58 & 1 \times 3.6=3.6
\end{array}
$$

18.02 per application 13.6 per application
$18.02-13.6=4.42 \mathrm{gpm}$ savings per application per zone Must also consider over spray

All 15' sprays at 50psi

Controller showed a 15min runtime.

Remember 18.02gpm
15^{\prime} Series with 27° Trajectory

Norate	Prasire	Raplus	GF91	Re	
IPN-15F	20	13	2.85	1.63	1.89
	30	15	3.60	1.55	1.79
	40	16	4.20	1.59	1.84
	50	16	4.58	1.73	2.00
[PN-1510	20	13	2.10	1.61	1.85
	30	15	2.60	1.49	1.72
	40	16	3.00	1.61	1.86
	50	16	3.40	1.72	1.98
[FW-15II	20	14	1.78	1.38	1.59
	30	15	2.20	1.42	1.64
	40	16	2.66	1.51	1.74
	50	16	2.84	1.61	1.86
IFN-15H	20	13	1.37	1.55	1.79
	30	15	1.65	1.44	1.66
\square	40	16	2.02	1.53	1.77
	50	16	2.14	1.62	1.87
	20	14	0.95	1.52	1.75
	30	15	1.10	1.42	1.64
+	40	16	1.30	1.57	1.82
	50	16	1.45	1.75	2.03
TPN-E	20	14	0.68	1.34	1.55
	30	15	0.85	1.46	1.69
	40	16	1.04	1.57	1.82
	50	16	1.23	1.86	2.15

All 15' sprays at 50psi

Controller showed a 15 min runtime.
New flow 9.27gpm

Arc	PSI	GPM	Radius	Precip-Rate圆 (ini./hr.)
150	40	0.53	14.2	1.0
	50	0.58	15.0	1.0
	60	0.58	15.0	1.0
	70	0.58	15.0	1.0
15 T	40	0.72	14.3	1.0
	50	0.77	15.0	1.0
	60	0.77	15.0	1.0
	70	0.77	15.0	1.0
$15 \mathrm{H}$	40	1.10	14.5	1.0
	50	1.16	15.0	1.0
	60	1.16	15.0	1.0
	70	1.16	15.0	1.0
$15 T T$	40	1.45	14.5	1.0
	50	1.54	15.0	1.0
	60	1.54	15.0	1.0
	70	1.54	15.0	1.0
$15 \mathrm{TQ}$	40	1.72	14.5	1.0
	50	1.78	15.0	1.0
	60	1.78	15.0	1.0
	70	1.78	15.0	1.0
$15 \mathrm{~F}$	40	2.20	14.5	1.0
	50	2.31	15.0	1.0
	60	2.31	15.0	1.0
	70	2.31	15.0	1.0

Courtesv rofTorourfiaætionnars urny.

Calculate Flow

Old flow x run time Compare new flow x run time
$18.01 \mathrm{gpm} \times 15 \mathrm{~min}=270.15 \mathrm{gpa}$
270.15×5 days $=1,350.75$ week $\times 4=5,403$ month

Old flow x run time Compare new flow x run time
$13.6 \mathrm{gpm} \times 15 \mathrm{~min}=204 \mathrm{gpa}$
204×5 days $=1,020$ week $\times 4=4,080$ month
$5,403-4,080=1,323$ savings per month per zone

Specialty nozzle

Old flow x run time Compare new flow x run time
$9.27 \mathrm{gpm} \times 15 \mathrm{~min}=139.05 \mathrm{gpa}$
139.05×5 days $=695.25$ per week $\times 4=2,781$ month
$5,403-2,781=2,622$ savings per month per zone

Single Family Monthly Water Volume Charges:

Remember to savings.

Volume	Inside City	Outside City
Year Round Rates		
First 10,000 gallons	$\$ 1.60$	$\$ 2.24$
Next 10,000 gallons	$\$ 2.08$	$\$ 2.92$
Next 40,000 gallons	$\$ 2.62$	$\$ 3.67$
Over 60,000 gallons	$\$ 3.27$	$\$ 4.58$

$2,622 \mathrm{gpm}$ per application per zone each month!!

Old flow x run time

 Compare new flow x run time$5,403 \times 6$ zones $=32,418$
Chandler water rate is tier 2 is $\$ 2.08 / 1000$ Gal
$33 \times 2.08=68.64$ cost per month for the 6 zones
Or \$823.68 per year just for the water

Return on Investment

Old flow x run time Compare new flow x run time
$2,781 \times 6$ zones $=16,686$ or 17 units
Chandler water rate is 2.068 unit
$17 \times 2.08=35.36$ Cost per month per 6 zones
$68.64-35.36=33.28$ savings per month per 6 zones
For the year that is $\$ 399.36$!!

Return on Investment

Old flow x run time
Compare new flow x run time
We had 9 heads on the zone List price to up-grade the zone
9 heads 4" PR-COM \$11.20 = \$100.80
Nozzles List price $\$ 40.05$
List price for 6 zones is $\$ 845.10$
Mreqticel

Water currently is $\$ 824$ per year as is. With up-grade savings is $\$ 399$ per year!!

List price for 6 zones is $\$ 845.10$
Labor 2 guys 8 hours. If $\$ 50$ per guy that $\$ 800$ Product of $845.10=1,645$ for the job.

Or a 4 year return on the investment.

Return on Investment

Old flow x run time

Compare new flow x run time

This is just the savings for nozzle and head change out More savings will come from other product enhancements (stay tuned)

Gpm and Run time

Precipitation Rate: 96.3xGPM-TZ SQ Ft. Zone

Run Time:
ETL
PR X 60

1) 14 gpm
2) 15 gpm
3) 18 gpm

$96.3 \times 13.6=1,309.68$
$30 \times 30=900=1.45$
New Run time
4) $P R$
5) Run Time Or 10 with SM
15^{\prime} Series with 27° Trajectory

Nowale	Frexsure	Ratic	GF9	m	
IPN-15F	20	13	2.85	1.63	1.89
	30	15	3.60	1.55	1.79
	40	16	420	1.59	1.84
	50	16	4.58	1.73	2.00
[PN-1514	20	13	2.10	1.61	1.85
	30	15	2.60	1.49	1.72
	40	16	3.00	1.61	1.86
	50	16	3.40	1.72	1.98
FW-15TI	20	14	1.78	1.38	1.59
	30	15	2.20	1.42	1.64
	40	16	2.66	1.51	1.74
	50	16	2.84	1.61	1.86
IFN-15H	20	13	137	1.55	1.79
	30	15	1.65	1.44	1.66
\square	40	16	2.02	1.53	1.77
	50	16	2.14	1.62	1.87
\|P/N-	20	14	0.95	1.52	1.75
	30	15	1.10	1.42	1.64
+	40	16	130	1.57	1.82
	50	16	1.45	1.75	2.03
IPN-159	20	14	0.68	1.34	1.55
	30	15	0.85	1.46	1.69
-	40	16	1.04	1.57	1.82
	50	16	1.23	1.86	2.15

1) 14 gpm
 2) 15 gpm
 3) 18 gpm

96.3X14.83=1,309.68 $30 \times 30=900=1.59$.17
$1.59=.107 \mathrm{X} 60=7 \mathrm{~min}$ Or 10 with SM

15 Series HEVAN

25° Trajectory Nozzle	Pressure psi	Radius ft.	Flow gpm	Precip In/h
360° Arc	15	11	2.62	2.08
	20	12	3.02	2.02
	25	14	3.38	1.66
	30	15	3.70	1.58
270° Arc	15	11	1.96	2.08
	20	12	2.27	2.02
	25	14	2.53	1.66
	30	15	2.78	1.58
$180^{\circ} \mathrm{Arc}$	15	11	1.31	2.08
	20	12	1.51	2.02
	25	14	1.69	1.66
	30	15	1.85	1.58
90° Arc	15	11	0.65	2.08
	20	12	0.76	2.02
	25	14	0.84	1.66
	30	15	0.93	1.58

New flow 14.83gpm

Space Protergram:

$\left[\begin{array}{ll}\text { Rectangular Spacing } & \\ \text { Distance Between Heads } & 57.0 \\ \text { Distance Between Laterals } & 57.0 \\ \text { Difset Distance } & \boxed{0.0} \\ \text { Pattern width } & 57.0 \\ \hline\end{array}\right.$
$\left[\begin{array}{c}\text { Drerlap Catchment Spacing } \\ \text { (A) Atomatio Manual } \quad \square\end{array}\right.$

http://www.fresnostate.edu/jcast/cit/software/

"Promote Efficient Irrigation"

Uniformity Indicators- Profiles

Sprinkler Profiles- performance of an individual sprinkler
A key tool in proper head spacing

"Promote Efficient Irrigation"

"Promote Efficient Irrigation"

Uniformity Indicators- Densograms

Easily understood and interpreted

Dark = Wet Light = Dry
Dry and wet areas:

- Location
- Size
- Shape

Can be compared to field observed patterns
"Promote Efficient Irrigation"

Q, H, F Nozzle Profiles for MPR

Let's look at spray heads!

Grid patters from SPACE ${ }^{\text {TM }}$

Possible Conclusions

Spray heads space @ 90\% of radius

- 15’ sprays on 13.5’ centers

Rotor heads space @ 85% of radius

- 36' radius throw, space on 30' centers
- Don't reduce radius of throw if possible

May improve system uniformity, but at higher cost and higher PR rates
Use SPACE ${ }^{\top \mathrm{M}}$ to make your own conclusions

Quality Product and Installation

Low quality product is unlikely to perform well Low quality product will fail sooner Installers using low quality product tend to install poorly designed and poorly installed systems

A "cheap" system cannot save water unless it is turned off!

Sprayheads

COM-Check Valve

- Check Valves
- Reduce potential for low head drainage
- Reduce potential for air hammer

Potential Savings COM vs Non-COM

Small Zone ($10^{\prime} \times 50^{\prime}$ front lawn)
$130^{\prime}-1$ "Class $200=1 \mathrm{ft}^{3}$ or 7.481 gallons/cycle $\times 10$ cycles/week

Potential Savings 74.81 gallons/week

Big Zone ($60^{\prime} \times 180^{\prime}$ commercial w/ gear-driven rotor)
$540^{\prime}-1$ " $+100^{\prime}-2^{\prime \prime}$ Class $200=6.59 \mathrm{ft}^{3}$ or 49.28 gal./cycle $\times 10$ cycles/week
Potential Savings 492.8 gallons/week

Sprayheads PR - Pressure Regulation

Alternative:
PC nozzles

Sprantheads Effects-of Pressure on Uniformity

I-PRO 4" with 8H Nozzle at 60 PSI
Distribution Uniformity Evaluation - Triangular Layout
$\mathrm{DU}=53 \%$
$\mathrm{CU}=67 \%$
$\mathrm{SC}=2.0$
Wettest Area

Driest Area

Spromheads
 Effects of Pressure onvuniformity

I-PRO 4" with 8H Nozzle at 30 PSI
Distribution Uniformity Evaluation - Triangular Lavout
$\mathrm{DU}=78 \%$
$\mathrm{CU}=82 \%$
SC $=1.3$

Wettest Area
Driest Area

Potential Savings Non-PR vs. PR

- $10^{\prime} \times 50$ ' turf area. (Etc of 1.2"/wk.)
- Distribution Uniformity =

Non-PR @ 60psi = 53\% PR @ 30psi = 78\%

Non PR (60psi) = 82 min./week $\times 10.32 \mathrm{gpm}=846$ Gallons
PR (30psi) $=58 \mathrm{~min} /$ week $\times 7.28 \mathrm{gpm}=422$ Gallons
424 gallons saved per week or 49% more efficient

The "Price" of Water

\$648/acre foot (.002/gal)

$\$ 325,851 /$ acre foot

\$724,414/acre foot

\$2.50/16 oz = \$6.5 Million/acre foot

Environmental

- Cools the Air
- Produces Oxygen
- Filters Air \& Reduces Pollution
- Captures \& Suppresses Dust
- Recharges \& Filters Groundwater Supply
- Reduces Storm Water Runoff

- Controls Soil Erosion
- Retains and Sequesters Carbon
- Assists Decomposition of Pollutants
- Restores Soil Quality

Oxygen and Turfgrass

"The grass and trees along our country's interstate system produce enough oxygen to support 22 million people!"
"According to the Outdoor Power Equipment Institute the average lawn takes in 4 times more carbon than the mower used to maintain it produces.

Community \& Human Health

- Enhances Community Pride \& Social Harmony
- Offers a Natural Playing Surface for Recreation
- Provides a Safe Surface \& Reduces Injuries
- Promotes Outdoor Activity \& Exercise
- Improves Physical \& Mental Health
- Relieves Stress
- Lowers Allergy Related Problems
- Dissipates Heat $\&$ Cools the Environment
- Reduces Glare
- Diminishes Noise Pollution
- Minimizes Nuisance Pests
- Compliments Overall Landscaping
- Preserves Natural Wildlife Habitat
www.lawninstitute.org
www.turfgrasssod.org

"The kind of thinking today that is preparing us for business tomorrow"

Thank You!

