CONVERSION TABLE FOR U.S. AND METRIC SYSTEM

METRIC TO U.S.		TO OBTAIN
MULTIPLY	$\times .03937$	$=$ inches
millimeter (mm)	$\times .3937$	$=$ inches
centimeters (cm)	$\times 39.37$	$=$ inches
meters (m)	$\times 3.281$	$=$ feet
meters (m)	$\times 1.094$	$=$ yards
meters (m)	$\times .6214$	$=$ miles
kilometers (km)	$\times 1093.62$	$=$ yards
kilometers (km)	$\times 3280.87$	$=$ feet
kilometers (km)	$\times 1.0567$	$=$ quarts
liters (I)	$\times .2642$	$=$ gallons
liters (I)	$\times .455$	$=$ pounds
liters (I)	$\left({ }^{\circ} \mathrm{C} \times 1.80\right)+32^{\circ}$	$=$ temp. in ${ }^{\circ} \mathrm{F}$
temperature in ${ }^{\circ} \mathrm{C}$	$\times 14.223$	$=\mathrm{lb} / \mathrm{sq}$ in (PSI)
kilograms $/ \mathrm{cubic} \mathrm{centimeter}\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	$\times 28.316$	$=$ liters
cubic feet $(\mathrm{cu} \mathrm{ft)}$		

U.S. TO METRIC		
MULTIPLY	$\times 25.4$	TO OBTAIN
inches (in)	$\times 2.54$	$=$ millimeters
inches (in)	$\times .254$	$=$ meters
inches (in)	$\times .3048$	$=$ meters
feet (ft)	$\times .9144$	$=$ meters
yards (yds)	$\times 1.6093$	$=$ kilometers
miles (mi)	$\times .0001943$	$=$ kilometers
yards (yds)	$\times .0003048$	$=$ kilometers
feet (ft)	$\times .945$	$=$ liters
quarts (qts)	$\times 3.78$	$=$ liters
gallons (gals)	$\times 2.2$	$=$ liters
pounds (lbs)	$\left({ }^{\circ} \mathrm{F}-32\right) \times .5556$	$=$ temp. in ${ }^{\circ} \mathrm{C}$
temperature in ${ }^{\circ} \mathrm{F}$		

MISCELLANEOUS CONVERSION FACTORS

MULTIPLY		TO OBTAIN
AREA		
acres (ac)	$\times 43560$	= square feet
acres (ac)	$\times 4046.8$	= square meters
square meters (sq m)	$\times 10.764$	= square feet
square feet (sq ft)	$\times 144$	= square inches
square inches (sq in)	$\times 6.452$	= square centimeters
hectares (ha)	$\times 10000$	= square meters
hectares (ha)	$\times 2.471$	= acres
POWER		
kilowatts (kW)	x 1.341	= horsepower
FLOW		
cubic feet/minute (cu ft/min)	x . 0004719	= cubic meters/second
cubic feet/second (cu ft/sec)	x 02832	= cubic meters/second
cubic yards/minute (cu yd/min)	x . 01274	= cubic meters/second
gallons/minute (gal/min)	x . 22716	= cubic meters/hour
gallons/minute (gal/min)	+ 3.7854	$=$ liters/minute
gallons/minute (gal/min)	$\times .06309$	$=$ liters/second
cubic meters/hour (cu m/hr)	x 16.645	= liters/minute
cubic meters/hour (cu m/hr)	x . 2774	$=$ liters/second
liters/minute (1/min)	$\times 60$	$=$ liters/second
VELOCITY		
feet/second (ft/sec)	x. 3048	= meters/second

MULTIPLY		TO OBTAIN
LENGTH	$\times 12$	$=$ inches
feet (ft)	$\times .6214$	$=$ miles
kilometers (km)	$\times 5280$	$=$ feet
miles (mi)	$\times 1609.34$	$=$ meters
miles (mi)	$\times .03937$	$=$ inches
millimeters (mm)	$\times 6.89476$	$=$ kilopascals
PRESSURE	$\times .068948$	$=$ bars
PSI	$\times 100$	$=$ kilopascals
PSI	$\times 2.31$	$=$ feet of head
bars	$\times 7.48$	$=$ gallons
PSI	$\times 28.32$	$=$ liters
VOLUME	$\times 35.31$	$=$ cubic feet
cubic feet (cu ft)	$\times 1.3087$	$=$ cubic yards
cubic feet (cu ft)	$\times 27$	$=$ cubic feet
cubic meters (cu m)	$\times 202$	$=$ gallons
cubic meters (cu m)	$\times 43,560$	$=$ cubic feet
cubic yards (cu yd)	$\times .003785$	$=$ cubic meters
cubic yards (cu yd)	$\times 3.785$	$=$ liters
acres/feet (ac/ft)	$\times 1.833$	$=$ gallons
gallons (gal)		
gallons (gal)		
imperial gallons (ig)		

SURGE PRESSURE

$\mathrm{P}=\left(\frac{\mathrm{VL}_{\mathrm{L}}}{\mathrm{T}}\right)$
 WHERE:
 $\mathbf{P}=$ Pressure rise (PSI) above the static pressure
 $\mathbf{V}=$ Velocity of flow (ft/sec)
 $\mathbf{L}=$ Length of pipe (ft) on the pressure side of the valve
 $\mathbf{T}=$ Closing time of valve (sec)
 CONVERSION TABLE FOR U.S. AND METRIC SYSTEM

Pressure drop calculations can be made for valves and strainers for different fluids, flow rates and sizes using the CV values and the following equation:

$\mathbf{P}=\frac{(\mathrm{G})^{2} \text { (specific gravity liquid) }}{\left(\text { (CV Factor) }{ }^{2}\right.}$
WHERE:
$\mathbf{P}=$ Pressure drop in PSI; feet of water $=\frac{\mathrm{PSI}}{.4332}$
$\mathbf{C}=$ Gallons per minute
$\mathbf{C V}=$ Gallons per minute per 1 PSI pressure drop

WATER PRESSURE

Water pressure varies by . 433 PSI for each foot of elevation change, or about 1 PSI for every $\mathbf{2 . 3}$ ft. gained or lost.
DEFINITIONS
Static Pressure - Water pressure without movement
Dynamic Pressure - Water pressure with movement
Precipitation Rate - How fast water is applied to the soil
Transpiration Rate - Amount of water plants require to live

Transpiration Rate - Amount of water plants require to live

TYPICAL SOLENOID DHM READINGS

Irritrol	24
Hunter	24
Rain Bird PGA	36
Rain Bird DV	40
Weathermatic	30
Toro 252	29
Toro 1"	53

Where:

G = Gallons per minute

CV = Gallons per minute per 1 PSI pressure drop

FRICTION LOSS THROUGH FITTINGS

Friction loss through fittings is expressed in equivalent feet of the same pipe size and schedule for the system flow rate.
Schedule 40 head loss per 100 -feet values are usually used for other wall thicknesses and standard iron pipe size outside diameters.

ITEM	1/2"	3/4"	11	1-3/4"	1-1/2"	2"	2-1/2"	3"	4"	6"	8"	10"	12"	14"	16"	18"	20"	24"
Tee Run	1.0	1.4	1.7	2.3	2.7	4.0	4.9	6.1	7.9	12.3	14.0	17.5	20.0	25.0	27.0	32.0	35.0	42.0
Tee Branch	3.8	4.9	6.0	7.3	8.4	12.0	14.7	16.4	22.0	32.7	49.0	57.0	67.0	78.0	88.0	107.0	118.0	137.0
90 Ell	1.5	2.0	2.5	3.8	4.0	5.7	6.9	7.9	11.4	16.7	21.0	26.0	32.0	37.0	43.0	53.0	58.0	67.0
45 Ell	. 8	1.1	1.4	1.8	2.1	2.6	3.1	4.0	5.1	8.0	10.6	13.5	15.5	18.0	20.0	23.0	25.0	30.0

LIGHTING WIRE GAUGE CHART

	WATTS													
FEET	20	40	60	80	100	120	140	160	180	200	220	240	260	280
20	12	12	12	12	12	12	12	12	12	10	10	10	8	8
40	12	12	12	12	12	12	12	12	10	10	10	10	8	8
60	12	12	12	12	12	12	12	10	10	10	10	10	8	8
80	12	12	12	12	12	12	10	10	10	10	8	8	8	8
100	12	12	12	12	12	10	10	10	10	8	8	8	8	
120	12	12	12	12	10	10	10	8	8	8	8	8		
140	12	12	12	10	10	10	10	8	8	8	8			
160	12	12	10	10	10	8	8	8	8					
180	12	10	10	10	8	8	8	8						
200	10	10	10	10	8	8	8							
220	10	10	10	8	8	8								
240	10	10	10	8	8	8								
260	10	10	8	8	8									
280	10	10	8	8	8									
300	10	10	8	8	8									

DISTRIBUTION UNIFORMITY

Formula for finding low quarter distribution uniformity

$$
\text { DUlq }=\frac{\text { LQavg }}{\text { Vavg }}
$$

WHERE

DUlq = Low Quarter Distribution Uniformity
LQavg = Average Catch in Lower Ouarter
Vavg = Average Catch Overall

DRIP IRRIGATION

Three Simple Steps to Getting Started
Step 1: Determine the water needs of plant. Consult the experts from which you
purchased your plant materials, or locate the evapotranspiration (ET) data online.
Step 2: Calculate the drip application rate.
Application Rate (in/hr) =
GPH x 1.604
irrigated area (in square feet)

Step 3: Adjust the run times.

| Run Time
 (in minutes) |
| :--- |\quad| in. of water required |
| :---: |
| application rate |$\times 60$

CONVERSION FORMULAS

$\mathbf{V}=\mathrm{W} / \mathrm{A} \quad \mathrm{A}=\mathrm{W} / \mathrm{V} \quad \mathrm{V} \times \mathrm{A}=\mathrm{W}$

$\mathbf{V}=$ Voltage

$\mathrm{A}=$ Amperage
$\mathrm{W}=$ Watts

HARDSCAPE

Sand Setting Bed and Compacted Aggregate Base Material
Calculation Chart

	TONS	YDS ${ }^{3}$	TONS	YDS ${ }^{3}$	TONS	YDS ${ }^{3}$
SQUARE FEET	100		150		200	
1" Sand Setting Bed	0.45	0.3	0.75	0.5	0.9	0.6
4" Compacted Aggregate Base	2.3	1.3	3.5	2.0	4.6	2.6
$6^{\text {" }}$ Compacted Aggregate Base	3.6	2.0	5.4	3.0	7.2	4.0
12" Compacted Aggregate Base	7.2	4.0	10.8	6.0	14.4	8.0
Calculations are approximate. Ouontities may vary depending upon materiol density and moisture content.						

FORMULAS

Area of a rectangle	length \times width
Area of a triangle	$1 / 2$ (base \times height)
Area of a circle	3.14 (radius \times radius)
Cubic feet	length \times width \times height
	$(27$ cubic feet $=1$ yard)

VOLTAGE DROP

Cable Constant Voltage Drop Formulas
(run length in feet)

8 GAUGE

$\frac{\text { watts } \times \text { run length } \times 2}{18,960}=$ Voltage Drop
$\mathbf{1 0}$ GAUGE
$\frac{\text { watts } \times \text { run length } \times 2}{11,920}=$ Voltage Drop
$\mathbf{1 2}$ GAUGE
$\frac{\text { watts } \times \text { run length } \times 2}{7,500}=$ Voltage Drop
$\mathbf{1 6 ~ G A U G E ~}$
$\frac{\text { watts } \times \text { run length } \times 2}{2,200}=$ Voltage Drop

