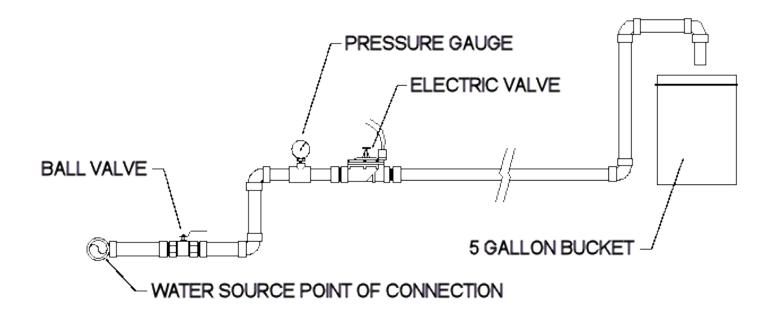


Irrigation Tech II

HYDRAULIC TROUBLESHOOTING

How much water & pressure is needed?


PGP® ULTRA / I-20 / PRB BLUE STANDARD NOZZLE PERFORMANCE DATA

Nozzle	Pressure PSI	Radius ft.	Flow GPM	Precip	in/hr
4.5.	25	29	1.2	0.27	0.32
1.5	35	31	1.4	0.28	0.32
Blue	45	31	1.5	0.30	0.35
	55	32	1.8	0.34	0.39
	65	32	1.9	0.36	0.41
2.0.0	25	33	1.4	0.25	0.29
2.0	35	33	1.7	0.30	0.35
Blue	45	34	2.0	0.33	0.38
	55	34	2.1	0.35	0.40
	65	32	2.3	0.43	0.50
0.5.0	25	33	1.7	0.30	0.35
2.5	35	35	2.1	0.33	0.38
Blue	45	35	2.5	0.39	0.45
	55	35	2.6	0.41	0.47
	65	35	2.9	0.46	0.53
	25	35	2.2	0.35	0.40

PGP ULTRA / I-20 / PRB GRAY LOW ANGLE NOZZLE PERFORMANCE DATA

Nozzle	Pressure PSI	Radius ft.	Flow GPM	Precip	in/hr ▲
	30	25	1.6	0.49	0.57
2.0	40	27	1.9	0.50	0.58
LA	50	28	2.1	0.52	0.60
Gray	60	30	2.3	0.49	0.57
2.5	30	27	2.1	0.55	0.64
2.5	40	30	2.5	0.53	0.62
LA	50	33	2.8	0.49	0.57
Gray	60	35	3.0	0.47	0.54
2.5	30	29	2.8	0.64	0.74
3.5	40	32	3.1	0.58	0.67
LA	50	35	3.5	0.55	0.64
Gray	60	37	3.8	0.53	0.62
4 5 0	30	29	3.4	0.78	0.90
4.5	40	32	3.9	0.73	0.85
LA	50	35	4.4	0.69	0.80
Gray	60	37	4.7	0.66	0.76

Water Flow

Water Pressure

Pressure is the force that moves water through a pipe

- Created by a pump
 - A pump creates pressure by pushing the water into a closed container (pipe) or a container with limited openings (pipe with sprinkler nozzles or drip emitters) so it is contained under a force.
 - Pressure changes in a system by friction losses or by elevation changes.
- Created by gravity

.433psi loss/gain per foot of elevation change

Pipe size is a factor only in that the water velocity is faster for a given flow rate for smaller pipe diameters. Remember that friction loss is greater for high water velocities.

How do you check pressure?

Troubleshooting Pressure

Video may be found at

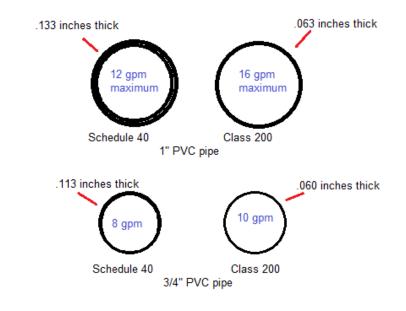
https://www.youtube.com/watch?v=gfPuUVWWzUE

Water Flow

Flow is a function of water velocity and the pipe cross-sectional area.

$Q = 7.48 \times V \times A$

- Q = quantity of water flow given in gallons per minute (gpm)
- **V** = velocity of water given in feet per minute (fpm). Charts may use feet per second (fps).
- A = cross-sectional area of the pipe given in square feet (sq ft)


There are 7.48 gallons of water in a cubic foot.

The flow rate in the pipeline must total the water demand needed to operate the sprinkler nozzles or drip emitters.

Pipe Cross-Sectional Area

- One inch pipe it is a nominal one inch; the true inside diameter usually is not 1 inch
 - Schedule 40 PVC pipe, the inside diameter is actually 1.029"
 - Outside diameters are kept constant so pipe fittings will fit
 - Higher pressure rated pipes will have thicker walls and smaller inside diameters.

Schedule 40 vs Class 200

Pipe Sizing

Irrigation Association Friction Loss Chart 2008

CLASS 200 PVC IPS PLASTIC PIPE

ASTM D-2241 (1120,1220) SDR 21 C=150 PSI Loss Per 100 Feet of Pipe

Nominal	Class	315							PSI Loss	Per IUU	reet of F	lpe								
Size	1/2	"	3/4	."	l 1'	•	1 1/	4"	1 1/3	2"	2"		2 1/	2"	3'	•	4'	•	6"	- 1
Avg. ID	0.69		0.9		1.10	69	1.48		1.70		2.12		2.58		3.14	46	4.0	46	5.98	55
Pipe OD	0.84	40	1.0		1.3	15	1.66		1.90		2.3	75	2.8		3.5		4.5	00	6.62	
Avg.Wall	0.0		0.0		0.0		0.08		0.10		0.12		0.14		0.1		0.2		0.33	
Min. Wall	0.0		0.0		0.0		0.0		0.09	90	0.11		0.13		0.1		0.2		0.31	
Flow	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI
GPM	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS
1	0.84	0.25	0.49	0.07	0.30	0.02	0.19	0.01	0.14	0.00										
2	1.68	0.90	0.99	0.24	0.60	0.07	0.37	0.02	0.28	0.01	0.18	0.00								
3	2.53	1.90	1.48	0.52	0.90	0.15	0.56	0.05	0.42	0.02	0.27	0.01								
4	3.37	3.24	1.97	0.88	1.19	0.26	0.74	0.08	0.56	0.04	0.36	0.01	0.24	0.01						
5	4.21	4.89	2.46	1.33	1.49	0.39	0.93	0.12	0.71	0.06	0.45	0.02	0.31	0.01						
6	5.05	6.86	2.96	1.86	1.79	0.55	1.11	0.17	0.85	0.09	0.54	0.03	0.37	0.01	0.25	0.00				
7	5.90	9.12	3.45	2.47	2.09	0.73	1.30	0.23	0.99	0.12	0.63	0.04	0.43	0.02	0.29	0.01				
8	6.74	11.68	3.94	3.17	2.39	0.94	1.49	0.30	1.13	0.15	0.72	0.05	0.49	0.02	0.33	0.01				
9	7.58	14.53	4.43	3.94	2.69	1.17	1.67	0.37	1.27	0.19	0.81	0.06	0.55	0.02	0.37	0.01				
10	8.42	17.66	4.93	4.79	2.99	1.42	1.86	0.45	1.41	0.23	0.90	0.08	0.61	0.03	0.41	0.01				
12	10.11	24.75	5.91	6.71	3.58	1.98	2.23	0.63	1.69	0.32	1.08	0.11	0.73	0.04	0.49	0.02				
14	11.79	32.93	6.90	8.93	4.18	2.64	2.60	0.83	1.98	0.43	1.26	0.14	0.86	0.06	0.58	0.02				
16	13.48	42.16	7.88	11.44	4.78	3.38	2.97	1.07	2.26	0.55	1.44	0.18	0.98	0.07	0.66	0.03	0.40	0.01		
18	15.16	52.44	8.87	14.23	5.37	4.21	3.34	1.33	2.54	0.68	1.62	0.23	1.10	0.09	0.74	0.03	0.45	0.01		
20			9.85	17.29	5.97	5.11	3.72	1.61	2.82	0.83	1.80	0.28	1.22	0.11	0.82	0.04	0.50	0.01		
22			10.84	20.63	6.57	6.10	4.09	1.92	3.11	0.99	1.98	0.33	1.35	0.13	0.91	0.05	0.55	0.01		
24			11.82	24.24	7.17	7.17	4.46	2.26	3.39	1.16	2.16	0.39	1.47	0.15	0.99	0.06	0.60	0.02		
26			12.81	28.11	7.76	8.31	4.83	2.62	3.67	1.34	2.34	0.45	1.59	0.18	1.07	0.07	0.65	0.02		
28			13.80	32.25	8.36	9.53	5.20	3.01	3.95	1.54	2.52	0.52	1.71	0.20	1.15	0.08	0.70	0.02		
30			14.78	36.64	8.96	10.83	5.57	3.41	4.24	1.75	2.70	0.59	1.84	0.23	1.24	0.09	0.75	0.03		
32					9.55	12.21	5.94	3.85	4.52	1.97	2.88	0.66	1.96	0.26	1.32	0.10	0.80	0.03	0.37	0.00
34					10.15	13.66	6.32	4.31	4.80	2.21	3.06	0.74	2.08	0.29	1.40	0.11	0.85	0.03	0.39	0.00
36	I				10.75	15.18	6.69	4.79	5.08	2.45	3.24	0.82	2.20	0.32	1.48	0.12	0.90	0.04	0.41	0.01
38	I				11.35	16.78	7.06	5.29	5.36	2.71	3.42	0.91	2.33	0.36	1.57	0.14	0.95	0.04	0.44	0.01
40					11.94	18.45	7.43	5.82	5.65	2.98	3.60	1.00	2.45	0.39	1.65	0.15		0.04	0.46	0.01
42					12.54	20.20	7.80	6.37	5.93	3,27	3.78	1.09	2.57	0.43	1.73	0.16	1.05	0.05	0.48	0.01

Friction Loss

As water moves through a pipe, there is friction loss, which is a function of the surface roughness of inside pipe walls, the diameter of the pipe, the velocity of the water, and the number of path restrictions along the way.

- Proper selection of pipe size is needed to ensure that the pipe:
 - is large enough to safely carry the quantity of water
 - has a reasonable friction loss so the operating pressure is largely preserved
 - is economical for the water flow

Friction Loss

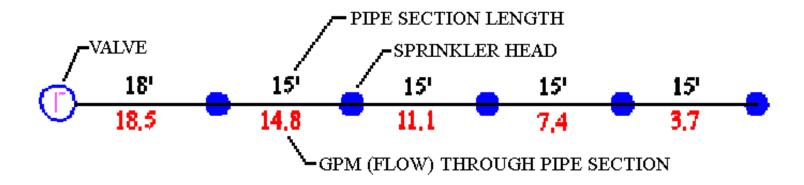
Irrigation Association Friction Loss Chart 2008

CLASS 200 PVC IPS PLASTIC PIPE

ASTM D-2241 (1120,1220) SDR 21 C=150
PSI Loss Per 100 Feet of Pipe

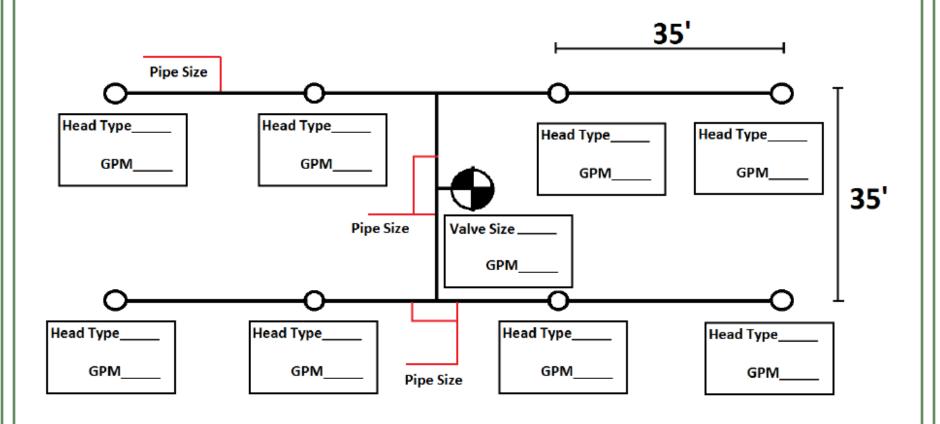
Nominal	Class	315							PSI Loss	Per 100) Feet of F	Pipe								
Size	1/2		3/4		1"	٠	1 1/4	4"	1 1/	2"	2"	·	2 1/	2"	3"	•	4"	۱ ۱	6"	()
Avg. ID	0.69		0.91	10	1.10	69	1.48	32	1.7	00	2.12	29	2.58	B1	3.14	46	4.04	16	5.98	55
Pipe OD	0.84	40	1.08	50	1.3	15	1.66	60	1.9	00	2.37	75	2.87	75	3.50	00	4.50	00	6.62	25
Avg.Wall	0.07	72	0.07	70	0.0	73	0.08	39	0.10	00	0.12	23	0.14	47	0.1	77	0.22	27	0.33	35
Min. Wall	0.06	52	0.06	50	0.0	63	0.07	79	0.0	90	0.11	13	0.13	37	0.10	67	0.2	14	0.3	16
Flow	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI
GPM	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS
1	0.84	0.25	0.49	0.07	0.30	0.02	0.19	0.01	0.14	0.00										
2	1.68	0.90	0.99	0.24	0.60	0.07	0.37	0.02	0.28	0.01	0.18	0.00								
3	2.53	1.90	1.48	0.52	0.90	0.15	0.56	0.05	0.42	0.02	0.27	0.01								
4	3.37	3.24	1.97	0.88	1.19	0.26	0.74	0.08	0.56	0.04	0.36	0.01	0.24	0.01						
5	4.21	4.89	2.46	1.33	1.49	0.39	0.93	0.12	0.71	0.06	0.45	0.02	0.31	0.01						
6	5.05	6.86	2.96	1.86	1.79	0.55	1.11	0.17	0.85	0.09	0.54	0.03	0.37	0.01	0.25	0.00				
7	5.90	9.12	3.45	2.47	2.09	0.73	1.30	0.23	0.99	0.12	0.63	0.04	0.43	0.02	0.29	0.01				
8	6.74	11.68	3.94	3.17	2.39	0.94	1.49	0.30	1.13	0.15	0.72	0.05	0.49	0.02	0.33	0.01				
9	7.58	14.53	4.43	3.94	2.69	1.17	1.67	0.37	1.27	0.19	0.81	0.06	0.55	0.02	0.37	0.01				
10	8.42	17.66	4.93	4.79	2.99	1.42	1.86	0.45	1.41	0.23	0.90	0.08	0.61	0.03	0.41	0.01				
12	10.11	24.75	5.91	6.71	3.58	1.98	2.23	0.63	1.69	0.32	1.08	0.11	0.73	0.04	0.49	0.02				
14	11.79	32.93	6.90	8.93	4.18	2.64	2.60	0.83	1.98	0.43	1.26	0.14	0.86	0.06	0.58	0.02				
16	13.48	42.16	7.88	11.44	4.78	3.38	2.97	1.07	2.26	0.55	1.44	0.18	0.98	0.07	0.66	0.03	0.40	0.01		
18	15.16	52.44	8.87	14.23	5.37	4.21	3.34	1.33	2.54	0.68	1.62	0.23	1.10	0.09	0.74	0.03	0.45	0.01		
20			9.85	17.29	5.97	5.11	3.72	1.61	2.82	0.83	1.80	0.28	1.22	0.11	0.82	0.04	0.50	0.01		
22			10.84	20.63	6.57	6.10	4.09	1.92	3.11	0.99	1.98	0.33	1.35	0.13	0.91	0.05	0.55	0.01		
24			11.82	24.24	7.17	7.17	4.46	2.26	3.39	1.16	2.16	0.39	1.47	0.15	0.99	0.06	0.60	0.02		
26			12.81	28.11	7.76	8.31	4.83	2.62	3.67	1.34	2.34	0.45	1.59	0.18	1.07	0.07	0.65	0.02		
28			13.80	32.25	8.36	9.53	5.20	3.01	3.95	1.54	2.52	0.52	1.71	0.20	1.15	0.08	0.70	0.02		
30			14.78	36.64	8.96	10.83	5.57	3.41	4.24	1.75	2.70	0.59	1.84	0.23	1.24	0.09	0.75	0.03		
32					9.55	12.21	5.94	3.85	4.52	1.97	2.88	0.66	1.96	0.26	1.32	0.10	0.80	0.03	0.37	0.00
34					10.15	13.66	6.32	4.31	4.80	2.21	3.06	0.74	2.08	0.29	1.40	0.11	0.85	0.03	0.39	0.00
36					10.75	15.18	6.69	4.79	5.08	2.45	3.24	0.82	2.20	0.32	1.48	0.12	0.90	0.04	0.41	0.01
38					11.35	16.78	7.06	5.29	5.36	2.71	3.42	0.91	2.33	0.36	1.57	0.14	0.95	0.04	0.44	0.01
40					11.94	18.45	7.43	5.82	5.65	2.98	3.60	1.00	2.45	0.39	1.65	0.15	1.00	0.04	0.46	0.01
42					12.54	20,20	7.80	6.37	5.93	3.27	3.78	1.09	2.57	0.43	1.73	0.16	1.05	0.05	0.48	0.01

Where friction loss occurs


Table of Approximate Pressure Losses for Pipe Fittings

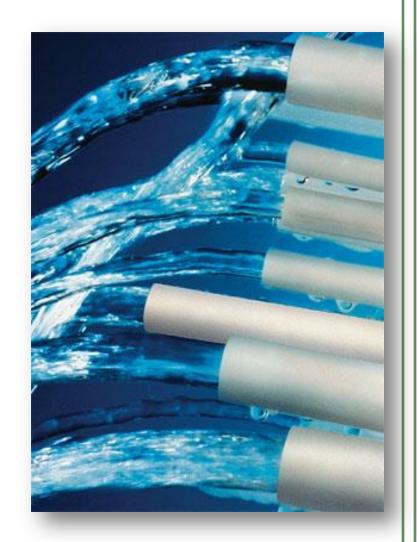
Listed in Equivalent Feet of Pipe

Plastic IPS or Copper Fitting Type	1/2"	3/4"	1"	11/4"	11/2"	2"	21/2"	3"	4"	6"	8"
Coupling	1.5	2.5	3.0	3.0	4.0	6.0	7.0	8.0	11.0	18.0	24.0
Run of St. Tee	2.5	3.0	4.0	5.0	6.0	8.0	9.0	11.0	15.0	21.0	28.0
Tee, Side Outlet	7.0	9.0	12.0	15.0	18.0	24.0	30.0	36.0	45.0	70.0	90.0
Tee, Run Reduced ½"	3.5	4.5	6.0	8.0	9.0	11.0	14.0	17.0	24.0	34.0	45.0
Elbow, 90°	3.5	4.5	6.0	8.0	9.0	11.0	14.0	17.0	24.0	34.0	45.0
Elbow, 34°	1.5	2.0	3.0	3.5	4.0	5.0	7.0	8.0	10.0	16.0	20.0


Pres	sure Los	s Throug	Water	Meters			
Pressure Nomina	Loss: psi Size						
Flow gpm	5/8"	3/4"	1″	1 1/2"	2"	3"	4"
1	0.2	0.1					
2	0.3	0.2					
	0.4	0.3					
3 4 5 6	0.6	0.5	0.1				
5	0.9	0.6	0.2				
6	1.3	0.7	0.3				
7	1.8	0.8	0.4				
8	2.3	1.0	0.5				
9	3.0	1.3	0.6				
10	3.7	1.6	0.7				
11	4.4	1.9	0.8				
12	5.1	2.2	0.9				
13	6.1	2.6	1.0				
14	7.2	3.1	1.1				
15	8.3	3.6	1.2				
16	9.4	4.1	1.4	0.4			
17	10.7	4.6	1.6	0.5			
18	12.0	5.2	1.8	0.6			
19	13.4	5.8	2.0	0.7			
20	15.0	6.5	2.2	0.8			
22		7.9	2.8	1.0			
24		9.5	3.4	1.2			
26		11.2	4.0	1.4			
28		13.0	4.6	1.6			
30		15.0	5.3	1.8			
32			6.0	2.1	0.8		

Irrigation Hydraulics

Irrigation Hydraulics


How do we calculate our water needs?

Let's take another look at our provided resources... page 37

Water Velocity

Within a given pipe, the flow rate increases as the velocity increases.

Velocity

Irrigation Association Friction Loss Chart 2008

CLASS 200 PVC IPS PLASTIC PIPE

ASTM D-2241 (1120,1220) SDR 21 C=150 PSI Loss Per 100 Feet of Pipe

Nominal	Class	315							PSI Loss	Per 100	Feet of F	Pipe								
Size	1/2		3/4	"	1"	١	1 1/4	4"	1 1/	2"	2"		2 1/	2"	3'	•	4'	۱ ۱	6"	
Avg. ID	0.69	96	0.9	10	1.10	69	1.48	32	1.70	00	2.12	29	2.5	81	3.1	46	4.0	46	5.95	55
Pipe OD	0.84		1.0		1.3		1.66		1.9		2.37	75	2.8	75	3.5	00	4.5		6.62	25
Avg.Wall	0.07		0.0		0.0		0.08		0.10		0.12		0.14		0.1		0.2		0.33	
Min. Wall	0.06	62	0.0	50	0.0	63	0.07	79	0.0	90	0.11	3	0.13	37	0.1	67	0.2	14	0.31	6
Flow	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI	Velocity	PSI
GPM	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS	FPS	LOSS
1	0.84	0.25	0.49	0.07	0.30	0.02	0.19	0.01	0.14	0.00										
2	1.68	0.90	0.99	0.24	0.60	0.07	0.37	0.02	0.28	0.01	0.18	0.00								
3	2.53	1.90	1.48	0.52	0.90	0.15	0.56	0.05	0.42	0.02	0.27	0.01								
4	3.37	3.24	1.97	0.88	1.19	0.26	0.74	0.08	0.56	0.04	0.36	0.01	0.24	0.01						
5	4.21	4.89	2.46	1.33	1.49	0.39	0.93	0.12	0.71	0.06	0.45	0.02	0.31	0.01						
6	5.05	6.86	2.96	1.86	1.79	0.55	1.11	0.17	0.85	0.09	0.54	0.03	0.37	0.01	0.25	0.00				
7	5.90	9.12	3.45	2.47	2.09	0.73	1.30	0.23	0.99	0.12	0.63	0.04	0.43	0.02	0.29	0.01				
8	6.74	11.68	3.94	3.17	2.39	0.94	1.49	0.30	1.13	0.15	0.72	0.05	0.49	0.02	0.33	0.01				
9	7.58	14.53	4.43	3.94	2.69	1.17	1.67	0.37	1.27	0.19	0.81	0.06	0.55	0.02	0.37	0.01				
10	8.42	17.66	4.93	4.79	2.99	1.42	1.86	0.45	1.41	0.23	0.90	0.08	0.61	0.03	0.41	0.01				
12	10.11	24.75	5.91	6.71	3.58	1.98	2.23	0.63	1.69	0.32	1.08	0.11	0.73	0.04	0.49	0.02				
14	11.79	32.93	6.90	8.93	4.18	2.64	2.60	0.83	1.98	0.43	1.26	0.14	0.86	0.06	0.58	0.02				
16	13.48	42.16	7.88	11.44	4.78	3.38	2.97	1.07	2.26	0.55	1.44	0.18	0.98	0.07	0.66	0.03	0.40	0.01		
18	15.16	52.44	8.87	14.23	5.37	4.21	3.34	1.33	2.54	0.68	1.62	0.23	1.10	0.09	0.74	0.03	0.45	0.01		
20			9.85	17.29	5.97	5.11	3.72	1.61	2.82	0.83	1.80	0.28	1.22	0.11	0.82	0.04	0.50	0.01		
22			10.84	20.63	6.57	6.10	4.09	1.92	3.11	0.99	1.98	0.33	1.35	0.13	0.91	0.05	0.55	0.01		
24			11.82	24.24	7.17	7.17	4.46	2.26	3.39	1.16	2.16	0.39	1.47	0.15	0.99	0.06	0.60	0.02		
26			12.81	28.11	7.76	8.31	4.83	2.62	3.67	1.34	2.34	0.45	1.59	0.18	1.07	0.07	0.65	0.02		
28			13.80	32.25	8.36	9.53	5.20	3.01	3.95	1.54	2.52	0.52	1.71	0.20	1.15	0.08	0.70	0.02		
30			14.78	36.64	8.96	10.83	5.57	3.41	4.24	1.75	2.70	0.59	1.84	0.23	1.24	0.09	0.75	0.03		
32			11.70	00101	9.55	12.21	5.94	3.85	4.52	1.97	2.88	0.66	1.96	0.26	1.32	0.10	0.80	0.03	0.37	0.00
34					10.15	13.66	6.32	4.31	4.80	2.21	3.06	0.74	2.08	0.29	1.40	0.11	0.85	0.03	0.39	0.00
36					10.75	15.18	6.69	4.79	5.08	2.45	3.24	0.82	2.20	0.32	1.48	0.12	0.90	0.04	0.41	0.01
38					11.35	16.78	7.06	5.29	5.36	2.71	3.42	0.02	2.33	0.36	1.57	0.12	0.95	0.04	0.44	0.01
40					11.94	18.45	7.43	5.82	5.65	2.98	3.60	1.00	2.45	0.39	1.65	0.15	1.00	0.04	0.44	0.01
42					12.54	20.20	7.43	6.37	5.93	3.27	3.78	1.00	2.43	0.43	1.73	0.15	1.05	0.04	0.48	0.01
74					4.04	20,20	7.00	0.07	0.33	3,21	5.70	1.09	2.01	V.43	1./3	0.10	1.00	0.03	U. 1 0	U.U.I

Distribution Uniformity (DU)

- The DU is a measurement of uniformity, expressed as a percentage, comparing the driest 25% or 50% of the areas to the average PR.
 - Note: the low half of the 50% DU will usually compare with the value calculated using CU
- A perfectly uniform application is represented by a DU of 100%. A less uniform application is represented by a lower percentage.

Precipitation Rate (PR)

 The PR is the average rate in inches per hour, at which water is being applied to the area covered by a specific sprinkler layout.

 PR is a function of the total sprinkler discharge applied to the area between the sprinklers.

Falcon 650	04 Nozzle Perf	ormance			
Pressure bar	Nozzle	Radius ft.	Flow gpm	Precip in/h	Precip in/h
50	 4 6 8 10 12 14 16 18 	41 49 51 53 55 59 61 59	3.7 5.5 7.4 9.1 11.0 12.7 14.3 15.4	0.42 0.44 0.55 0.62 0.70 0.70 0.74 0.85	0.49 0.51 0.63 0.72 0.81 0.81 0.85 0.98
60	 4 6 8 10 12 14 16 18 	41 47 51 55 57 61 63 63	4.0 6.0 8.2 10.0 12.2 14.0 15.7 17.1	0.46 0.52 0.61 0.64 0.72 0.72 0.76 0.83	0.53 0.60 0.70 0.73 0.83 0.84 0.88 0.96

NOZZLES

PRECISION DISTRIBUTION CONTROL™ ADJUSTABLE NOZZLES PERFORMANCE DATA

12A

Green

12' radius Adjustable from 0° to 360° Trajectory: 28°

15A ● Black 15' radius Adjustable from 0° to 360° Trajectory: 28°

			Hajector	y. 20			Trajector	y . 20	
Arc	Pressure	Radius	Flow	Precip	in/hr	Radius	Flow	Precip	in/hr
	PSI	ft.	GPM			ft.	GPM		
1 E0	20	11	0.25	1.59	1.84	14	0.39	1.51	1.75
45°	25	12	0.28	1.60	1.85	15	0.43	1.57	1.82
	30	12	0.32	1.68	1.95	15	0.47	1.59	1.84
	35	13	0.37	1.80	2.08	16	0.52	1.55	1.79
	40	13	0.42	1.91	2.21	17	0.57	1.60	1.85
000	20	11	0.50	1.59	1.84	14	0.77	1.51	1.75
90°	25	12	0.55	1.60	1.85	15	0.86	1.57	1.82
	30	12	0.63	1.68	1.95	15	0.93	1.59	1.84
	35	13	0.73	1.80	2.08	16	1.03	1.55	1.79
	40	13	0.84	1.91	2.21	17	1.13	1.60	1.85
1200	20	11	0.67	1.59	1.84	14	1.03	1.51	1.75
120°	25	12	0.73	1.60	1.85	15	1.15	1.57	1.82
	30	12	0.84	1.68	1.95	15	1.24	1.59	1.84
•	35	13	0.97	1.80	2.08	16	1.37	1.55	1.79
	40	13	1.12	1.91	2.21	17	1.51	1.60	1.85
1000	20	11	1.00	1.59	1.84	14	1.54	1.51	1.75
180°	25	12	1.10	1.60	1.85	15	1.72	1.57	1.82
	30	12	1.26	1.68	1.95	15	1.86	1.59	1.84
	35	13	1.46	1.80	2.08	16	2.06	1.55	1.79
	40	13	1.68	1.91	2.21	17	2.26	1.60	1.85
240°	20	11	1.33	1.59	1.84	14	2.05	1.51	1.75
240	25	12	1.47	1.60	1.85	15	2.29	1.57	1.82
	30	12	1.68	1.68	1.95	15	2.48	1.59	1.84
	35	13	1.95	1.80	2.08	16	2.75	1.55	1.79
	40	13	2.24	1.91	2.21	17	3.01	1.60	1.85

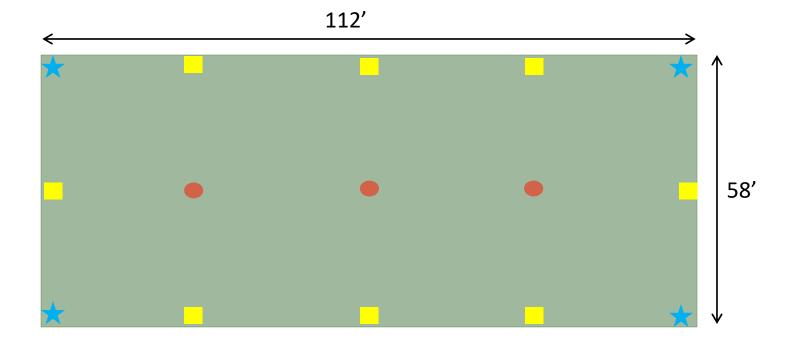
Calculating Precipitation Rates

Use this formula to calculate PR:

$$\frac{96.3 \times GPM}{S \times L} = IPH$$

- **96.3** = a constant
- **GPM** = gallons per minutes applied to the target area by all sprinklers in patterns
- **S**= distance in feet of the sprinklers on a row
- L= distance in feet between sprinklers in a row
- **IPH**= average inches per hour

Calculating Precipitation Rates


Calculating the PR for the sprinkler layout using the following information:

Operating pressure: 45 psi

★ 90°- 1.4 GPM

180°- 2.9 GPM

360°- 5.5 GPM

Calculating Precipitation Rates

Calculating the PR for the sprinkler layout using the following information:

Operating pressure: 45 psi

$$\frac{96.3 \times GPM}{S \times L} = IPH$$

= 0.67" per hour (PR)

Matched Precipitation Rates

- Matched Precipitation Rates (MPR)
 - Sprinklers which apply water at the same rate per hour no matter the arc or coverage (matched gpm flow rates to arc coverage)
 - Spray heads have fixed arcs and are matched for you
 - Rotors offer a choice of nozzles for you to match to the designed arc pattern

MP Rotators

MP ROTATOR PERFORMANCE DATA

MP1000

Radius: 8' to 15'

Adjustable Arc and Full-Circle

- Maroon: 90° to 210°
- Lt. Blue: 210° to 270°
- Olive: 360°

MP2000

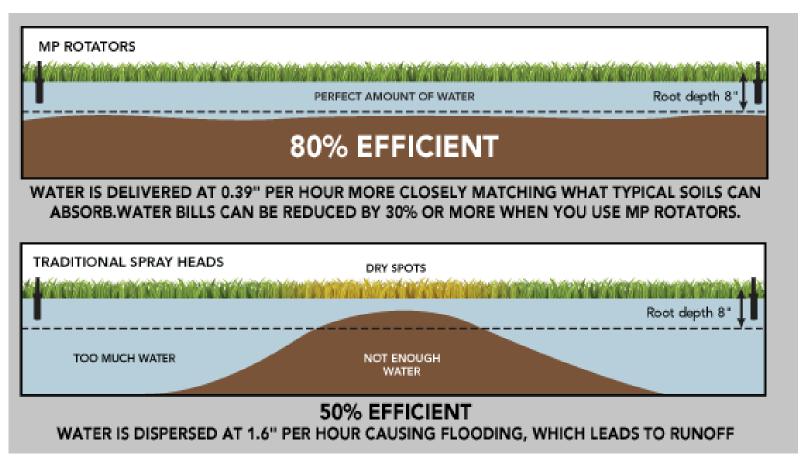
Radius: 13' to 21'

Adjustable Arc and Full-Circle

- Black: 90° to 210°
- Green: 210° to 270°
- Red: 360°

MP3000

Radius: 22' to 30'


Adjustable Arc and Full-Circle

- Blue: 90° to 210°
- Yellow: 210° to 270°
- Gray: 360°

Arc	Pressure PSI	Radius ft.	Flow GPM	Flow GPH	Precip	in/hr	Radius ft.	Flow GPM	Flow GPH	Precip	in/hr	Radius ft.	Flow GPM	Flow GPH	Precip	in/hr
	25						17	0.34	20.4	0.45	0.52	25	0.71	42.6	0.44	0.51
90°	30	12	0.17	10.2	0.45	0.52	18	0.38	22.8	0.45	0.52	27	0.76	45.6	0.40	0.46
	35	13	0.19	11.4	0.43	0.50	19	0.40	24.0	0.43	0.49	28	0.82	49.2	0.40	0.46
	40	14	0.21	12.6	0.41	0.48	20	0.43	25.8	0.41	0.48	30	0.86	51.6	0.37	0.42
	45	14	0.23	13.8	0.45	0.52	21	0.46	27.6	0.40	0.46	30	0.90	54.0	0.39	0.44
	50	15	0.25	15.0	0.43	0.49	21	0.47	28.2	0.41	0.47	30	0.95	57.0	0.41	0.47
	55	1 5	0.27	16.2	0.46	0.53	21	0.48	28.8	0.42	0.48	30	1.01	60.6	0.43	0.50
	25						16	0.6	36.0	0.45	0.52	25	1.44	86.4	0.44	0.51
180°	30	12	0.34	20.4	0.45	0.52	17	0.64	38.4	0.43	0.49	27	1.58	94.8	0.42	0.48
	35	13	0.38	22.8	0.43	0.50	18	0.71	42.6	0.42	0.49	28	1.70	102.0	0.42	0.48
	40	14	0.42	25.2	0.41	0.48	19	0.77	46.2	0.41	0.47	30	1.82	109.2	0.39	0.45
	45	14	0.44	26.4	0.43	0.50	20	0.85	51.0	0.41	0.47	30	1.93	115.8	0.41	0.48
	50	15	0.50	30.0	0.43	0.49	21	0.91	54.6	0.40	0.46	30	2.04	122.4	0.44	0.50
	55	15	0.51	30.6	0.44	0.50	21	0.95	57.0	0.41	0.48	30	2.13	127.8	0.46	0.53

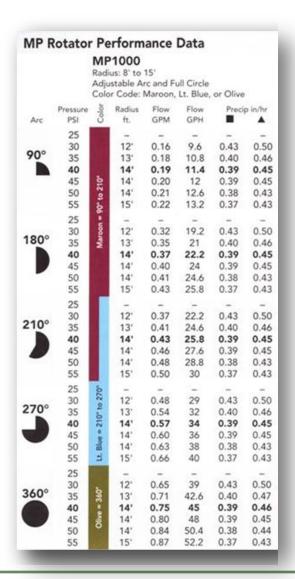
Matched Precipitation Rates

MP ROTATORS DISTRIBUTE WATER EVENLY AND UNIFORMLY

http://www.hunterindustries.com

What was used in the past

VS

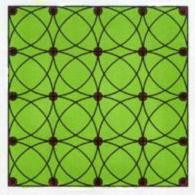

What's available now

Selecting Sprinklers & Spacing Ranges

- Sprinkler performance charts contain:
- PSI
 - Sprinkler operating pressure
- Radius
 - Distance from the sprinkler to the edge of the throw (feet)
- GPM
 - Flow rate of the sprinkler with difference size orifices
- Precipitation Rate
 - Delivery rate based on arc & spacing



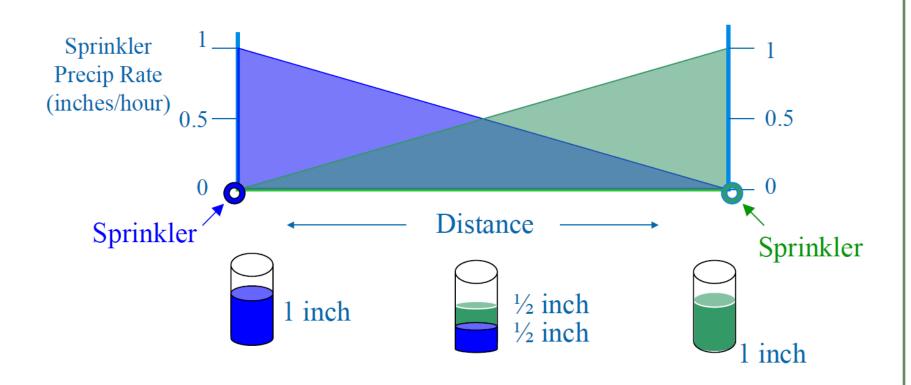
Not-so-Good Spacing


Sprinklers & Spacing Ranges

- Sprinklers are designed to provide uniform distribution of water only if overlapping coverage is provided
- A single sprinkler, when tested with catch cans, delivers most of its water close-in to the sprinkler and less and less as the distance away from the sprinkler increases
- When overlapped, the weak area of coverage from one sprinkler is supplemented by the surrounding sprinklers

Sprinklers & Spacing Ranges

- The most common sprinkler spacing range and in most cases the most efficient, is head-to-head spacing:
 - Sprinklers spaced at their expected radii or 50% of the sprinkler's diameter.
- The sprinkler radius shown in the manufacturer's catalog is measured in a zero wind test building. For windy areas, closer spacing is required to maintain head-to-head spacing (49% of diameter or closer)
- The 2 most common types of sprinkler spacing patterns are square (top) and triangular (bottom)



FULL COVERAGE: HEAD-TO-HEAD SPACING SPRAY FROM EACH HEAD TOUCHES THE NEXT SPRINKLER OVER ENTIRE AREA.



SPACING IS NOT HEAD-TO-HEAD, NOT FULL COVERAGE, MANY WEAK SPOTS.

Distribution Uniformity when head-to-head coverage

Scheduling Multiplier

Distribution Uniformity (DU)

Solutions

- Pressure compensating emitters
- Pressure compensating bubblers
- Pressure compensating rotors
- Pressure regulation (drip manifold)
- Pressure regulation (valve)
- Pressure regulation (backflow)
- Pressure regulation (house)
- Controller that learns, monitors and reacts to flow
- High efficiency nozzles
- Booster pump

Solutions

- Pump running at 92 psi
- At the heads the pressure was 70-72 psi
- Changed out the heads from PGP to I-20's
- Reduced the pressure at the head to 45-50 psi
- Increased droplet size and distance for each of the heads

Water Hammer

- Closing a valve quickly can cause a surge of pressure or water hammer in pipes that are filled quickly with high-velocity water. It can occur when flow reverses direction and goes back against a stopped pump.
- To prevent water hammer that might damage the pipes, limit water velocities to a maximum of 5 ft/sec (360 to 420 ft/min).

Water Hammer

Video may be found at:

https://www.youtube.com/watch?v=ujNGaQKap98

WATER SMART SITE CHECKLIST

ешіпа

Customer:	Site:			
Inspected by:	Date:	:	Phone Number:	
DISCUSSION				
Walk the site to ide	entify landscape and water concerns.			
☐ Yes ☐ No	is the customer concerned about cost of wa	ater?		
☐ Yes ☐ No	Is the customer concerned about landscape	e quality?		
☐ Yes ☐ No	Is the customer concerned about ecological			
☐ Yes ☐ No	Is the customer willing to change watering	habits to improve th	he landscape concerns?	
CONTROLLER				
	Identify controller location and type and nur	mber of valves:		
☐ Yes ☐ No	Irrigation schedule needs seasonal adjustm		ega a conservant personal desiration	
☐ Yes ☐ No	Map of property or list of zones is not availa		closure to identify site	
☐ Yes ☐ No	Sensors need to be installed. Which: Rail	in 🗆 Freeze 🗆 Soil	Moisture	
☐ Yes ☐ No	Is it time to replace the controller with a sm	nart controller?		
VALVES				
Locate and identify				
☐ Yes ☐ No	Valve installed improperly			
☐ Yes ☐ No	Does not turn on or off completely when us	sing a bleed pin (or s	solenoid) to test diaphragm	
☐ Yes ☐ No	Flow setting for zone needs to be adjusted			
☐ Yes ☐ No	Solenoid wires and wire connectors appear	loose corroded or	absent	
☐ Yes ☐ No	Leaks or breaks are visible at threaded con			
☐ Yes ☐ No	Ball valves, slip fixes or other devices instal		re leaking	
☐ Yes ☐ No	Cannot operate all valves manually			
SPRINKLERS/ZO	INES			
☐ Yes ☐ No	Spacing of sprinklers too close or too far for	r nlant material and	snrinkler type	
☐ Yes ☐ No	Mixed nozzle types on same zone	pan materia ara	opinios typo	
☐ Yes ☐ No	Mixed plant types on same zone			
☐ Yes ☐ No	Misting or other signs of improper pressure	2		
☐ Yes ☐ No	Extremely dry spots and wet spots in the sa			
☐ Yes ☐ No	Leaking or broken heads visible			
☐ Yes ☐ No	Clogged or missing nozzles visible			
☐ Yes ☐ No	Water blocked by overgrown plant material	l, sunken sprinkler b	oodies, etc.	
☐ Yes ☐ No	Erosion or drainage problems visually appar			
Other/Notes:				
If YES is checked for landscape health!	r any of the items above, these are opportunit	ities to tune up your	irrigation system to reduce water waste and in	npro
OPPORTUNITIES	TO SAVE WATER:			
will will like		□ Install ch	eck valves on all sloped areas.	
☐ Eiv all leake and	breake in enrinklare ninge and value			
	breaks in sprinklers, pipes, and valves.			
☐ Replace poor no	breaks in sprinklers, pipes, and valves. zzles with high efficiency nozzles. regulated sprinkler bodies or valves.	☐ Adjust flo	ow settings on valves, to a smart controller.	

A **BIG** Thank You

Contributors:

- Doug Donahue, Ewing
- Paul Tammelleo, Irritrol
- Shannon Scott, AAA Landscape
- Pat Johnston, Horizon
- Brian Whitcher, Toro
- Jeff Gilbert, University of Arizona